Sonochemically produced fluorocarbon microspheres: a new class of magnetic resonance imaging agent.

نویسندگان

  • A G Webb
  • M Wong
  • K J Kolbeck
  • R Magin
  • K S Suslick
چکیده

With the intent of increasing the signal-to-noise ratio (SNR) of fluorine magnetic resonance imaging and enabling new applications, we have developed a novel class of agents based on protein encapsulation of fluorocarbons. Microspheres formed by high-intensity ultrasound have a gaussian size distribution with an average diameter of 2.5 microns. As with conventional emulsions, these microspheres target the reticuloendothelial system. However, our sonochemically produced microspheres, because of a high encapsulation efficiency, show increases in the SNR of up to 300% compared to commercially available emulsions. We also demonstrate an increase in the circulation lifetime of the microspheres with the bloodstream by more than 30-fold with a chemical modification of the outer surface of the microsphere. Finally, by encapsulating mixtures of fluorocarbons that undergo solid/liquid phase transitions, we can map temperature in the reticuloendothelial system, with signal changes of approximately 20-fold over a 5 degrees C range.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...

متن کامل

The Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent

Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...

متن کامل

A New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).

Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity.   Materials ...

متن کامل

The Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent

Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...

متن کامل

Encapsulation and release of aqueous components from sonochemically produced protein microspheres.

Aqueous solutions of salts or dyes have been contained in sonochemically produced lysozyme microspheres by encapsulating an inverse emulsion in tetradecane. Release can be triggered by chemically disrupting crosslinking in the protein shell or by mechanical disruption using high intensity ultrasound.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance imaging : JMRI

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 1996